
Journal of Computational Physics 199 (2004) 423–436

www.elsevier.com/locate/jcp
A three-dimensional adaptive method based on the
iterative grid redistribution

Desheng Wang a, Xiao-Ping Wang b,*

a Department of Mathematics, The University of Xiangtan, Hunan, PR China
b Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Received 14 October 2003; received in revised form 16 February 2004; accepted 19 February 2004

Available online 19 March 2004
Abstract

In this paper, we develop a three-dimensional adaptive method based on iterative grid redistribution technique

introduced in [J. Comput. Phys. 159 (2000) 246]. The key step for the successful implementation is a fast algorithm for

grid generation, which is composed of solving the linear grid equation systems and an efficient method for inverting a

map by computing iso-surface intersections. To carry out the three-dimensional calculations, the whole procedure is

also parallelized on a PC cluster. The improved and extended three-dimensional adaptive method is applied to solve

PDEs with singular solutions that have three-dimensional structures. Numerical experiments have demonstrated the

method’s effectiveness.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

There are many physical phenomena that develop singular or nearly singular behavior in a localized

regions. The numerical solutions of these problems require extremely fine mesh to resolve accurately the
solution in small regions. The use of well-refined uniform meshes becomes computationally prohibitive

when dealing with systems in multi-dimensions. Various adaptive methods are developed for this type of

problems. Mesh adaptivity is usually in the form of local mesh refinements or through mesh mapping. For

the numerical solutions of many problems from areas such as fluid dynamics, combustion and heat transfer

and others, the required density of grid points is determined in general by the solution’s gradients. Large

gradient require a high grid-point density in order to increase the accuracy and at the same time decreases

the cost of numerical calculations in comparison with the uniform grid, as is called adaptive computation.

Various solution-adaptive methods which eliminates the need to have a priori qualitative estimate of the
solution have been developed towards the above end, such as local adaptive mesh refinement [2], moving
*Corresponding author.

E-mail address: mawang@ust.hk (X.-P. Wang).

0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2004.02.014

mail to: mawang@ust.hk

424 D. Wang, X.-P. Wang / Journal of Computational Physics 199 (2004) 423–436
finite elements mesh refinement [15,16], adaptive node movement (see, e.g. [1,4,6,9,12] and references

therein), or methods based on attraction and repulsion pseudo-forces between nodes [18]. In order to

handle singular problems (in particular blow-up solutions) more effectively, Ren and Wang [19] introduced
the iterative grid redistribution (IGR) method to give an effective control of grid density near the region of

large solution variation. The method has been successfully applied to many problems with singular

behavior [7,19].

In this paper, we make several modifications and improvements on the adaptive method introduced in

[19], so that it is much more efficient and capable of handling three-dimensional problems that are of

practical applications. In the adaptive method with IGR for time dependent PDEs, there are three main

components: (1) a grid generation rule, (2) an iterative procedure and (3) an adaptive time integration of the

underline PDE. In [19], grid generation is done by variational approach which results in a system of elliptic
system. The solution of this system is then obtained by heat flow. Although affordable in two dimensions, it

is too expensive for three-dimensional applications. The computational cost for time integration of the

underline PDE in three-dimensional is further increased by the fact the number of terms generated from

the chain rule (when calculating derivatives in the computational variables) increases exponentially with the

order of the derivatives. Therefore, in order to solve a three-dimensional singular problem within a

reasonable CPU time, it is necessary to make both the methods for grid generation and the time integration

of the PDE more efficient.

For efficient grid generation, we introduce a fast algorithm which is based on an intuition that the
curvilinear coordinates or equivalently the grid points are just the intersection points of the iso-surfaces

(contour lines in two-dimensional) of the map nðxÞ from the physical domain to the computational domain,

which can be obtained easily from a linear decoupled elliptic system. Based on this intuition, we develop a

fast algorithm consisting of solving the linear system for nðxÞ, constructing the iso-surfaces and finding the

intersections. This direct grid generation method not only is very efficient but also eliminates the conver-

gence and stability issues for the existing methods for solving the grid system [8,10,17, 20]. Furthermore, it

can be parallelized effectively.

To speed up the three-dimensional computations, we parallelize the whole procedure. Since our time
integration of PDE is explicit, parallelization can be done effectively with domain decompositions. With a

finite difference scheme in space, message passing is only needed near the boundary of each sub-domain.

This enables us to achieve a very good parallel efficiency. Our numerical tests show that the speed-up of the

parallelization is almost linear to the processor numbers.

With these improvements, we are able to build up a three-dimensional parallel (in MPI) solver. The

solver is then applied to several problems with three-dimensional singular structures. In the following, we

first recall the iterative grid redistribution method in Section 2. The fast algorithm for grid generations and

the parallelization procedure are described in Sections 3 and 4. The numerical examples of nonlinear
Schr€odinger equation and Keller–Seigel equation are given in Section 5.
2. Adaptive method based on iterative grid redistribution

In this section, we recall the IGR method introduced in [19]. The method consists of the following three

parts:

(1) A grid generation rule that determines the mesh mapping x ¼ T ðnÞ.
(2) An iterative procedure that controls the grid distribution near the singular points.

(3) A procedure for solving PDEs.

The step (2) is the key for the method to be successful for the problem with singular behavior. It is a

procedure that improves the grid distribution near singular region if the mapping T in step (1) cannot

achieve enough resolution in the singular region. To see this, let us assume that the mesh mapping T in (1)

D. Wang, X.-P. Wang / Journal of Computational Physics 199 (2004) 423–436 425
has the tendency to move the grids toward a point x0 in the domain as in Fig. 1 where x0 is the center of the

domain. Then the grid points will continue to move toward x0 as we iterate the mapping T . This gives

certain control of the density of the grid points near the point x0 and therefore improves over step (1). We
now explain the three steps in detail.

2.1. Grid distribution based on the variational principle

We are concerned with generating a mesh that adapted to the solution uðxÞ (at a given time) to a time

dependent PDEs. In two and three spatial dimensions, mesh generation is commonly done using the

variational approach, specifically by minimizing a functional of the coordinate mapping between the

physical domain and the computational domain. The functional is chosen so that the minimum is suitably
influenced by the desired properties of the solution of the PDE itself.

Let x and n denote the physical and computational coordinates, respectively, on a domain X 2 Rd . A

one-to-one coordinate transformation on X is denoted by

x ¼ xðnÞ; n 2 X: ð2:1Þ

Here the grid on the computational domain n is uniform and the corresponding distribution gives the grid

distribution in the physical domain. The functionals used in existing variational approaches for mesh

generation and adaptation can usually be expressed in the form

EðnÞ ¼
Z
X

X
i;j;a;b

gi;j
ona

oxi
onb

oxj
dx; ð2:2Þ
0 2 4 6 8
0

1

2

3

4

5

6

7

0 2 4 6 8
0

1

2

3

4

5

6

7

0 2 4 6 8
0

1

2

3

4

5

6

7

0 2 4 6 8
0

1

2

3

4

5

6

7

T

T2 T3

Fig. 1. The effect of map iterations.

426 D. Wang, X.-P. Wang / Journal of Computational Physics 199 (2004) 423–436
where G ¼ ðgi;jÞ, G�1 ¼ ðgi;jÞ are symmetric positive definite matrices that are monitor functions in a matrix

form. Here gi;j depends on the underline solution uðxÞ of the PDEs. The coordinate transformation and the

mesh are determined from the Euler–Lagrange equation

r � ðG�1rnÞ ¼ 0: ð2:3Þ

In most of our cases, a diagonal matrix G is good enough for our purposes. One possible choice is

gi;j ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jruj2

q
Þdi;j. In this case, (2.3) is a decoupled system in three components. We note that more

terms can be added to the functional (2.2) to control other properties of the mesh, such as orthogonality of

the mesh and the alignment of the mesh lines with a prescribed vector field [4].
2.2. An iterative grid redistribution procedure

As illustrated in [19], grid generation using the above variational approach may not produce satisfactory

mesh resolution when the solution uðxÞ is near singular. An iteration procedure is introduced in [19] to

improve the grid distribution in such cases.

Let us first define the mapping

T : ðx; uðxÞÞ ! ðn; vðnÞÞ ¼ ðn; uðxðnÞÞÞ:

Here x ¼ xðnÞ is determined from (2.3) with a monitor matrix involving uðxÞ. Therefore, the mapping from
x to n is determined by u first, and u is then mapped to v by the change of variables.

If the monitor matrix G is properly chosen, the resulting mesh should concentrate more grid points in the

regions with large variations. If the resolution in the singular region is not good enough, we iterate the

mapping T as in Fig. 1. From the definition of T, we note that x ! n is u dependent; therefore, the grid

mapping is different in each iteration since u itself is iterated as we iterate T .
• Let ukðxkÞ be the function after k iterations.

• Determine the mapping xkðxkþ1Þ from ukðxkÞ according to (2.3) where monitor matrix Gk is defined using

ukðxkÞ.
• Define ukþ1ðxkþ1Þ :¼ ukðxkðxkþ1ÞÞ.

For example, after two iterations, we have

ðx; uðxÞÞ !T ðn1; v1ðn1ÞÞ !T ðn2; v2ðn2ÞÞ:

In the first iteration, we determine a grid mapping xðn1Þ and v1ðn1Þ ¼ uðxðn1ÞÞ. In the second iteration, we

have n1ðn2Þ and v2ðn2Þ ¼ v1ðn1ðn2ÞÞ.
The result of the iteration is to flatten out the monitor function gradually. In fact, if ukðxÞ and xkðnÞ

converge, then we must have xk ! x�ðnÞ ¼ n and uk ! u�ðxÞ [19].

2.3. Adaptive procedure for solving PDEs

We now incorporate the iterative remeshing into a static adaptive method for solving PDEs (see [19] for

details). Consider a PDE of the form

wt ¼ F ðx;w;Dw;D2wÞ; x 2 Xp ð2:4Þ

supplemented with initial and boundary conditions.

Our adaptive procedure is as follows:

(0) Given an initial condition wðx; t ¼ 0Þ, the initial grid transform xðnÞ is determined from the iterative
remeshing, which in turn gives an initial condition in the computational domain wðxðnÞ; t ¼ 0Þ.

D. Wang, X.-P. Wang / Journal of Computational Physics 199 (2004) 423–436 427
(1) Solve the PDE in the computational variable n with the grid transformation xðnÞ being fixed, until some

t� when the solution wðxðnÞ; t�Þ cannot meet a certain criterion set in terms of computational variables.

(2) Generate a new mesh by the iterative remeshing, based on wðxðnÞ; t�Þ. The remeshing iteration stops if

the criterion in (1) is satisfied. Interpolation is used to generate the solution at the new grid points.
(3) Go to (1) to continue the integration.

Eq. (2.4) will be transformed into computational variables ðw; nÞ and discretized in the computational

domain. It was pointed out in [7] that the usual central difference scheme has lower accuracy on non-

uniform grid than that on the uniform grid. A modified discretization scheme was introduced in [7] which

has higher accuracy.
3. Fast algorithm for grid generations

Grid generation is to obtain the curvilinear coordinate system x ¼ xðnÞ (for n on a uniform grid) from

the above elliptic system (2.3)). However, (2.3) is a linear, decoupled system for the inverse map nðxÞ. Most

of the existing algorithms begin with transforming (2.3) into a set of coupled quasi-linear elliptic equations

in xðnÞ then solve the derived quasi-linear elliptic equations by either iteration methods (e.g. SOR,

FLAGG, Multigrid [5,10,17]) or by heat flow [9]. In 2D, the iteration cost is usually affordable. But in

three-dimensional, especially in the case of highly complex geometric boundaries and a large number of

computational points, the CPU time necessary to generate an acceptable grid using these solvers can be
excessively high. When coupled with the underline PDE solver, the percentage of CPU time spent gener-

ating the grid could equal, or even exceed that for solving the underline PDEs.

An alternative approach is to solve the linear system (2.3) for nðxÞ (for x on a uniform grid), which can

be done with standard linear solver, then find the inverse map to obtain xðnÞ. The trade off is that the

inversion of the map nðxÞ can be expensive. In [8], an iterative method is used to invert the map xðnÞ.
However, convergence of the map is problem dependent. In this paper, we propose an efficient, direct

method (without iteration) for inverting the map after nðxÞ is obtained from (2.3).

To simplify the discussion, let us consider the two-dimensional case and assume that we solve (2.3) by a
conjugate gradient method on a quadrilateral grid denoted by Q. We then obtain a triangle finite element

mesh T from Q through bisecting each quadrilateral element. Let us assume that we have an uniform grid

in the computational domain n with grid points ðni; giÞ. We are looking for the corresponding grid points

ðxi; yiÞ in the physical domain. Let K be a triangle in the finite element mesh (physical domain) with three

vertices A;B;C (Fig. 2) whose corresponding ðn; gÞ values are ðnA; gAÞ; ðnB; gBÞ; ðnC; gCÞ. Denote the extreme

values of them by nmin; nmax; gmin; gmax. First, we find the values fni1; ni2; . . . ; nikg which fall between nmin and

nmax. For each value(say ni1), we apply linear interpolation to find the linear segment which is an ap-

proximate for the contour n ¼ ni1. The contours are shown in (1) of Fig. 2 by the thick segments S1; S2. The
g contours are shown in (2) of Fig. 2 by the thin segments T1; T2. The intersection points (g1; g2; g3; g4 in (3)

of Fig. 2) of the n and g contour lines are the grid points in the physical domain that fall into triangle K.
Fig. 2. Contours construction and intersection computation for grid points.

428 D. Wang, X.-P. Wang / Journal of Computational Physics 199 (2004) 423–436
Clearly, the above procedure requires only Oð1Þ computations which is optimal. Various tests have shown

that the time for intersection computing is less than 10% of the time for solving the elliptic equations.

Obviously this method is much more efficient than the indirect method that we mention earlier. Our nu-
merical examples in the Section 5 show that the CPU time for the grid generation is only a very small part

(usually is less than 1/10) of the CPU time for the whole computations. Another advantage of the direct

method (over iterative methods) is that there is no convergence or stability issues involved.

Our direct method is also parallel friendly. Contour line constructions and intersection computations

can be carried out in each sub-domain in a parallel manner with no communication cost.
4. Parallelization of the whole adaptation process

To speed up the computation, we parallelize the entire adaptive solution process. Since we use explicit

scheme for time integration of the underline PDE on uniform mesh in the computational variables, a direct

parallelization with domain decomposition is effective in speeding up the computations. The iterative grid

generation part can also be parallelized effectively.

4.1. Domain decomposition and message passing scheme

For simplicity, we describe the domain decomposition scheme in two dimensions. Denote the number of

processors allocated in our MPI program to be NPR, and we divide the two-dimensional computational

domain ½0; 1�2 into NP � NQ sub-domains, where NPR ¼ NP � NQ. The following domain decomposition

scheme is used which is also illustrated in Fig. 3.

(1) We divide an unit cube into equal or almost equal grid points in each direction and accordingly make

each processor with almost equal computational load.

(2) There is one layer of grid points overlapped between two neighboring sub-domains (see Fig. 3) and the

message passing is performed between these overlapped points. One layer overlapping is enough for our
applications with second order PDEs.
Fig. 3. Domain decomposition.

D. Wang, X.-P. Wang / Journal of Computational Physics 199 (2004) 423–436 429
(3) Each sub-domain corresponds to a processor and the computation is only performed in parallel

manner on the interior grid points of each sub-domain, the pseudo-boundary points are for message

passing.

After the decomposition, the usual sequential computation is done on each sub-domain. When each
iteration such as CG iteration or time integration was done, we need to update the values of each sub-

domain’s pseudo-boundary points through message passing. The message passing is done via one direction

at a time with blocking passing format, which can guarantee that all the pseudo-boundary points’ values

can be updated successfully. Under special hardware environment, we can also use non-blocking message

passing method to overlap the computation and the message passing (see [13] for details).
4.2. Parallelization of conjugate gradient method for the grid equations

Parallelization can be done for any existing conjugate gradient method (CGM), which involves only

vector multiplications and inner product to determine parameters. The domain decomposition and message

passing scheme can be chosen as described above. For vector multiplication, the natural parallelization is to

perform each sub-domain’s interior points multiplication. The computation of the parameters is done with

some global reduce operations [13]. After each CG iteration, a message passing is performed to update each

sub-domain’s pseudo-boundary values.
4.3. Parallelization of iso-surfaces construction and the intersection computation

As there is no message passing required in the construction of the iso-surfaces and the determination of

their intersections, the parallelization is straight forward and the speed up is optimal. The grid points are

numbered lexicographically, a one-dimensional domain decomposition is enough for the parallelization.

We divide the grid elements into NPR (# of processors) almost equal domains. We then perform the iso-

surfaces construction by linear interpolation and compute the intersections of these iso-surfaces in each

domain as described in Section 3.
4.4. Parallelization of the time integration

For simplicity, we assume that, after finite difference approximation, the underline PDE has the form

Ut ¼ F ðUÞ;

where F ðUÞ is a function of U . We apply a second-order Runge–Kutta scheme for time integration. Let Dt
be the time-step size and initialize Uold by U 0, the two step Runge–Kutta scheme is as follows:

Step 1: Umid ¼ Uold þ Dt
2
F ðUoldÞ.

Step 2: Unew ¼ Uold þ DtF ðUmidÞ.
To parallelize the procedure, we use the domain decomposition and the message-passing as described

before. The pseudo-code form of the parallelization is as follows:

0. Initialization Uold by U 0 for each sub-domain in parallel.

1. Perform Step 1 in each sub-domain in parallel manner.

2. Perform message passing to update Umid values at each sub-domain’s pseudo-boundary points.

3. Perform Step 2 in each sub-domain in parallel manner.

4. Perform message passing to update Unew values at each sub-domain’s pseudo-boundary points. Let

Uold ¼ Unew and goto 1.

In the above parallel computation, the message passing is kept at minimum and our numerical statistics
show that the speed-up can get up to 0.75 which shows a good parallel efficiency.

430 D. Wang, X.-P. Wang / Journal of Computational Physics 199 (2004) 423–436
5. Numerical examples

5.1. Nonlinear Schr€odinger equation: point singularity

We first solve the nonlinear Schr€odinger equation (NLS)

iwt þ Dwþ jwj2w ¼ 0; ðx; y; zÞ 2 Xp; t > 0;
wðx; y; z; tÞjoXp
¼ 0

with cubic nonlinearity in three dimensions. The singular solutions with one blow up point were success-

fully computed using the dynamic re-scaling method first developed in [14] for the radially symmetric case

and generalized in two and three dimensions in [11]. Later, Ren and Wang [19] applied the iterative grid

redistribution to solutions with multiple point singularities in two dimensions. As a first test example of our

three-dimensional method, we shall compute the singular solution with the single blow up point in three
dimensions.

The initial condition is set to be

wðx; y; z; 0Þ ¼ 8:5e�4ðx2þy2þz2Þ:

The physical domain Xp is chosen to be ½�2; 2�3, while the computational domain is chosen to be ½0; 1�3.
In grid generation, the monitor function is taken to be

wðn; g; fÞ ¼ 1

�
þ a

jwðn; g; fÞj
jwjmax

þ b
jrwðn; g; fÞj
jrwjmax

�
:

The remeshing criterion is set so that

jrwðn; g; fÞj
jwjmax

< TOL:

Here we choose TOL¼ 6 and let a ¼ b ¼ 1:0. The time step size is chosen to satisfy CFL condition

Dt ¼ 0:01h2min where hmin is the minimal size of the current grid elements.

The above three-dimensional NLS equation is solved on Xc with 80� 80� 80 grid points in parallel

programs. About 29 remeshing steps are conducted before the computation reaches t ¼ 0:0261420 when the

maximum value of the solution is 1.5636� 104. Fig. 4 shows the sectional view of the contours filling for the

solutions at t ¼ 0:0261420 and the local mesh distribution. where one can see that the minimum mesh size is

about 2.796� 10�5. The singularity is well solved with more than 1000 grid points within the cube of size
10�4. And the maximum of the solution as a function of t is shown in Fig. 5. From that, we see a three-

dimensional blow up solution well captured by our adaptive method.

Our computations were performed on a PC-Cluster installed with MPI system. For comparisons, we

solve the equation to the same physical time t ¼ 0:0261420 in two cases: one using 8 processors, while the

other using only 1 processor. The CPU cost for 8 processors calculation is 5700 s, while that for one

processor calculation is 33,200 s. This shows that our parallel computation’s speed up can get up to almost

0.75.

To illustrate the efficiency of our proposed grid generation, we show the following remeshing CPU time
statistics. For each remeshing, including solving the grid equation with conjugate gradient method and the

grid map inversion, it takes only less than 20 s. The total CPU time for all remeshing steps is less than 600 s,

almost one-tenth of the total CPU time (5700 s). For the grid generation algorithm in [19], the same ratio is

almost one-forth (1650/5590) for a two-dimensional problem.

Fig. 5. Maximum values versus time.

Fig. 4. Density plot of the solution of NLS in a cross-section (left) where the maximum value reaches 1.5636� 104 and local mesh

distribution near singularity (right) where the minimum mesh size is about 2.796� 10�5.

D. Wang, X.-P. Wang / Journal of Computational Physics 199 (2004) 423–436 431
5.2. Keller–Seigel equation: complex singularity

Our next example is the three-dimensional Keller–Segal (KS) model for bacterial pattern formation:

qt ¼ �Dq�r � ðqrCÞ; ðx; y; zÞ 2 Xp; t > 0;
Ct ¼ DC þ q:

Here q is the bacterial density and C is the attractant field. In some cases, the concentration of the at-

tractant C draws the bacteria together and they achieve an infinite density with complicated geometric

structures. It is observed in [3] that the high density regions initially collapse into cylindrical structures (line

singularities) which subsequently destabilize and break up into spherical aggregates (point singularities).
Here, we are interested in simulating the phenomena with the KS model. Two cases will be considered. The

432 D. Wang, X.-P. Wang / Journal of Computational Physics 199 (2004) 423–436
first case has the initial attractant concentration on a straight line. Subsequent evolution shows a transition

from line singularity to point singularities. The second case has the initial attractant concentration on a

curved line which shows faster development of point singularities.

5.2.1. From line singularity to point singularity

The first initial condition is an uniform density distribution and an attractant field with a small per-

turbation in the z direction on the domain ½0; 1�3

qðx; y; z; 0Þ ¼ 1:0;
Cðx; y; z; 0Þ ¼ e�10ððx�0:5Þ2þðy�0:5Þ2Þð1þ 0:01j sin 2pzjÞ:

The � is taken to be 0.01.

The above equation is solved on a uniform mesh in Xc with 40� 40� 200 grid points. The monitor

function and the parameters a and b are chosen as that in the NLS point singularity problem, and the TOL

is chosen to be 8.0. The computation is continued until t ¼ 0:7534794 when the maximum density reaches

about 4.6� 104.

The density q, at first, increases gradually, showing a line singularity along the central line

ð0:5; 0:5; zÞ; z ¼ 0; 1 until t reaches about 0.70. Then, this line singularity changes to multiple points sin-

gularity on two points which are initially perturbed to the maximal: ð0:5; 0:5; 0:25Þ and ð0:5; 0:5; 0:75Þ. The
density increases quickly and blows up at these two points in the end (Fig. 6). The color Fig. 7 shows the

transition from line singularity to point singularity in contour filling forms corresponding to times:

t1 ¼ 0:0023; t2 ¼ 0:736591; t3 ¼ 0:7511; and t4 ¼ 0:75347497. Fig. 8 shows the cutting view of the local grids

corresponding to line singularity and points singularity, respectively. Fig. 9 shows the local sectional view

of the grid around one singular point. Also, Fig. 6 shows the log plot of density values along the cental line

ð0:5; 0:5; zÞ (0 < z < 1) versus time, which again illustrates the singularity transition.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

1

10
2

10
3

10
4

10
5

z

ρ

Fig. 6. Transition from line singularity to point singularities for KS: q (log scale) along the center line ð0:5; 0:5; zÞ.

Fig. 7. Cross-sectional view of the color density plot for the same solution as in the previous figure.

D. Wang, X.-P. Wang / Journal of Computational Physics 199 (2004) 423–436 433
The computation were done with 8 parallel processors which takes about 12 CPU hours (which would
need 70 h on a single computation node). About 16 remeshings were performed. The ratio of the remeshing

time to the total time is about (1:10) which again shows the efficiency of the new grid generation scheme.

5.2.2. Three points blow-up

Next, we change the initial data slightly so that the initial attractant field is concentrated on a curved line

instead of a straight line along z direction

qðx; y; z; 0Þ ¼ 1:0;
Cðx; y; z; 0Þ ¼ e�10ððx�x0ðzÞÞ2þðy�0:5Þ2Þ;

where x0ðzÞ ¼ 0:5þ 0:1 cosð2pzÞ, Then the density q quickly develops maximum at three turning points of

the line x0ðzÞ and results in point singularities at ð0:6; 0:5; 0:0Þ, ð0:4; 0:5; 0:5Þ, ð0:6; 0:5; 1:0Þ. Fig. 10 shows

the contour filling of the density changing along the time. The four fillings are corresponding to times

t1 ¼ 0:0012; t2 ¼ 0:5974; t3 ¼ 0:6825; t4 ¼ 0:7393. Fig. 11 shows the distribution of grids. The CPU time,

speed-up of our parallel program and other computation statistics demonstrate the effectiveness of the

proposed iterative grid redistribution and its modifications in fast grid generation and parallelization.

Fig. 8. Local grid distribution near the line singularity.

Fig. 9. Local view of the grid around a singular point.

434 D. Wang, X.-P. Wang / Journal of Computational Physics 199 (2004) 423–436

Fig. 11. Cutting view of the grids (left) and a local grid distribution near a singularity.

Fig. 10. Three points blow up for KS: cross-sectional view of color density plot of the solution.

D. Wang, X.-P. Wang / Journal of Computational Physics 199 (2004) 423–436 435

436 D. Wang, X.-P. Wang / Journal of Computational Physics 199 (2004) 423–436
6. Conclusions

We have extended the iterative grid redistribution method for computing singularities from two di-
mensions to three dimensions. Two major improvements have been made: (1) a fast algorithm for efficient

and robust grid generation; (2) parallelization of the whole adaptation process, which has almost optimal

speed-up efficiency. With these modifications, the implemented three-dimensional iterative grid redistri-

bution method is now a powerful tool for resolving not only point singularities, but also for complex

singularities such as line singularity, transitions from line singularity to point singularities. We demon-

strated the effectiveness of our method with several three-dimensional examples. We note that the analysis

of global error for our method (or for moving mesh method in general) is a difficult problem which needs

further study.
Acknowledgements

This work is supported in part through the Research Grant Council of Hong Kong by Grant HKUST

6176/99P and HKUST 6143/01P. Part of the work was done when D.S. Wang was a Postdoc at Institute of

Computational Mathematics AMSS, Chinese Academy of Sciences.
References

[1] D.A. Anderson, Grid cell volume control with an adaptive generator, Appl. Math. Comput. 35 (1990) 209.

[2] M. Berger, P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys. 82 (1989) 64–84.

[3] M.D. Betterton, M.P. Brenner, Collapsing bacterial cylinders, Phys. Rev. E 64 (2001) 061904.

[4] J. Brackbill, An adaptive grid with directional control, J. Comput. Phys. 108 (1993) 38.

[5] R. Camarero, M. Younis, Efficient generation of body-fitted coordinates for cascades using multigrid, AIAA J. 18 (5) (1980).

[6] H. Ceniceros, T.Y. Hou, An efficient dynamically adaptive mesh for potentially singular solutions, J. Comput. Phys. 172 (2001) 1–

31.

[7] G. Fibich, W. Ren, X.P. Wang, Numerical simulations of self-focusing of ultrafast laser pulses, Phys. Rev. E 67 (2003) 056603.

[8] R. Hagmeijer, Grid adaption based on modified anistropic diffusion equations formulated in the parametric domain, J. Comput.

Phys. 115 (1994) 169–183.

[9] W. Huang, R.D. Russell, Moving mesh strategy based upon gradient flow equation for two dimensional problems, SIAM J. Sci.

Comput. 20 (1999) 998–1015.

[10] S.A. Jordan, M.L. Spaulding, A fast algorithm for grid generation, J. Comput. Phys. 104 (1993) 118–128.

[11] M. Landman, G.C. Papanicolaou, P.L. Sulem, C. Sulem, X.P. Wang, Stability of isotropic singularities for the nonlinear

Schr€odinger equation, Physica D 47 (1991) 393–415.

[12] R. Li, T. Tang, P.-W. Zhang, A moving mesh finite element algorithm for singular problems in two and three space dimensions, J.

Comput. Phys. 177 (2002) 365–393.

[13] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard (Version 1.1), Technical Report, 1995. Available

from <Http://www.mpi-forum.org>.

[14] D.W. McLaughlin, G. Papanicolaou, C. Sulem, P.L. Sulem, Phys. Rev. A 34 (1986) 1200.

[15] K. Miller, R.N. Miller, Moving finite elements I, SIAM J. Numer. Anal. 18 (1981) 1019–1032.

[16] P.K. Moore, J.E. Flaherty, J. Comput. Phys. 98 (1992) 54.

[17] J.F. Thompson, Z.U.A. Warsi, C.W. Mastin, Numerical Grid Generation, North-Holland, New York, 1985.

[18] M.M. Rai, D.A. Anderson, Grid evolution in time asymptotic problems, J. Comput. Phys. 43 (1981) 327–344.

[19] W. Ren, X.-P. Wang, An iterative grid redistribution method for singular problems in multiple dimensions, J. Comput. Phys. 159

(2000) 246–273.

[20] A. Winslow, Numerical solution of the quasi-linear Poisson equation, J. Comput. Phys. 1 (1996) 149.

http://Http://www.mpi-forum.org

	A three-dimensional adaptive method based on the iterative grid redistribution
	Introduction
	Adaptive method based on iterative grid redistribution
	Grid distribution based on the variational principle
	An iterative grid redistribution procedure
	Adaptive procedure for solving PDEs

	Fast algorithm for grid generations
	Parallelization of the whole adaptation process
	Domain decomposition and message passing scheme
	Parallelization of conjugate gradient method for the grid equations
	Parallelization of iso-surfaces construction and the intersection computation
	Parallelization of the time integration

	Numerical examples
	Nonlinear Schro¨dinger equation: point singularity
	Keller-Seigel equation: complex singularity
	From line singularity to point singularity
	Three points blow-up

	Conclusions
	Acknowledgements
	References

